Bayes risk minimization using metric loss functions

نویسندگان

  • Ralf Schlüter
  • T. Scharrenbach
  • Volker Steinbiss
  • Hermann Ney
چکیده

In this work, fundamental properties of Bayes decision rule using general loss functions are derived analytically and are verified experimentally for automatic speech recognition. It is shown that, for maximum posterior probabilities larger than 1/2, Bayes decision rule with a metric loss function always decides on the posterior maximizing class independent of the specific choice of (metric) loss function. Also for maximum posterior probabilities less than 1/2, a condition is derived under which the Bayes risk using a general metric loss function is still minimized by the posterior maximizing class. For a speech recognition task with low initial word error rate, it is shown that nearly 2/3 of the test utterances fulfil these conditions and need not be considered for Bayes risk minimization with Levenshtein loss, which reduces the computational complexity of Bayes risk minimization. In addition, bounds for the difference between the Bayes risk for the posterior maximizing class and minimum Bayes risk are derived, which can serve as cost estimates for Bayes risk minimization approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On surrogate loss functions and $f$-divergences

The goal of binary classification is to estimate a discriminant function γ from observations of covariate vectors and corresponding binary labels. We consider an elaboration of this problem in which the covariates are not available directly, but are transformed by a dimensionality-reducing quantizer Q. We present conditions on loss functions such that empirical risk minimization yields Bayes co...

متن کامل

Empirical Risk Minimization for Metric Learning Using Privileged Information

Traditional metric learning methods usually make decisions based on a fixed threshold, which may result in a suboptimal metric when the inter-class and inner-class variations are complex. To address this issue, in this paper we propose an effective metric learning method by exploiting privileged information to relax the fixed threshold under the empirical risk minimization framework. Privileged...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005